Platte River Power Authority’s Rawhide Energy Station, northwest of Wellington, Colorado, is among the most efficient plants in the western U.S., averaging an equivalent availability factor of more than 90 percent and an average capacity factor of nearly 90 percent. The plant generates and transmits power to homes and businesses throughout its owner-communities in Estes Park, Fort Collins, Longmont and Loveland, Colorado.
The plant features a 280 MW boiler originally supplied in 1984 and fueled by nearby Powder River Basin coal reserves.
To comply with the U.S. EPA’s Coal Combustion Residual (CCR) rule and other pending legislation aimed at mitigating environmental risks associated with long-term storage of ash in impoundments, plant operators sought to remove its aging sluicing system and close down its bottom ash pond.
In addition to environmental compliance, the solution needed to take into account:
• Site-specific logistics for space
• Condition of existing equipment
• Outage plans
• Ongoing maintenance requirements
• Operational simplicity, flexibility and redundancy
The Platte River team performed a detailed review of available technologies. Some involved sluicing the ash with transport water, then recirculating and reusing the water. This carried the risk of an unintentional discharge of a zero-discharge stream, as well as the high cost and complexity of recirculating millions of gallons of water a day. Other technologies eliminated these risks associated with the sluiced water stream, but required more work and space around the boiler area that didn’t exist.
The team then considered the newly developed Allen-Sherman-Hoff® Submerged Grind Conveyor (SGC) from Babcock & Wilcox (B&W), which was designed to address and eliminate these very issues.
Platte River selected B&W’s SGC. The SGC is a bottom-carry conveyor, with both the conveying and return sections housed in a common water-impounded, water-tight housing. It did not require removal or demolition of the ash hopper or replacement of the boiler seal plates as do traditional submerged chain conveyors, thus reducing conversion costs.
The SGC also:
• Avoided the use of transport water and zero-discharge requirementsB&W’s low-profile SGC technology allowed the plant’s existing ash hopper to be retained in place. To fit the conveyors below this existing structure, B&W integrated its proprietary low-profile double roll clinker grinder into the design.
The use of clinker grinders to reduce particle size below about 3 in (7.6 cm) permits the conveyor housings to be small, which enables it to fit beneath and around existing structures.
The SGC chain tensioning design is fully submerged, which allows it to be tightly packaged in the conveyor housing. This avoids the conventional tall take-up towers to elevate above the water level in the hopper.Choisissez votre région géographique pour envoyer une demande commerciale ou de service :